
R & D NOTES 

Detection of Gross Errors in Process Data 

LINEAR RECONCILIATION PROBLEM 

Process data reconciliation and rectification and their relation- 
ship to process performance monitoring functions have been the 
subject of many recent publications. [See, for instance, Mah (1981) 
for a review of these publications.] In this note we shall confine our 
attention to process data reconciliation subject to linear constraints, 
and more specifically, to the problem of detecting and identifying 
the presence of one or more gross errors in the process data. 

Generally speaking, process measurements are corrupted by two 
types of errors: Random errors which are commonly assumed to 
be independently and normally distributed with zero mean, and 
gross errors which are caused by non-random events such as in- 
strument biases, malfunctioning measuring devices, incomplete 
or inaccurate process models. Let y be an (n X 1) vector of mea- 
sured variables, b be a (p X l) vector of unknown parameters, D 
be an (n x p) matrix of known constants, for which rank (D) = p 
5 n,  and E be an (n X 1) vector of errors distributed normally with 
a zero mean vector and a known variance-covariance matrix Q. 
Then in the absence of gross errors, the basic model is 

y = D b + c  (1) 

and the general linear reconciliation problem is the least-squares 
estimation of b subject to the linear constraints 

A b = c  (2) 
where A is a (q X p) matrix of known constants and c is a (q X 1) 
vector of known constants. 

The linear reconciliation problem formulated above is a gen- 
eralization of the reconciliation problems treated by previous in- 
vestigators. Thus, the reconciliation of flow and inventory data 
reported by Mah et al. (1976) is a special case in which y is the 
vector of measured flow rates (v in their paper), D is an identity 
matrix, b is the vector of true flow rates s(p), A is the incidence 
matrix (A), p = n and c = 0. Nogita (1972) treated essentially the 
same problem but considered only the diagonal terms (variances) 
of the covariance matrix in his minimization. Almasy and Sztano 
(1975) also studied this problem but they allowed c to be non-zero. 
On the other hand, the reactor data reconciliation problem reported 
by Madron et al. (1977) contains no constraints (Eq. 2) on b which 
corresponds to the vector of extents of chemical reactions (x). For 
that problem y is the measured vector of increases in the numbers 
of moles of species (n+), D is their (1 X I) matrix (AT) of stoichio- 
metric coefficients, n = I = number of reactive species, 1 = 
number of independent chemical reactions, and Q is denoted by 
F _  in their paper. Madron et al. (1977) actually considered an r- 
subvector of n+ (denoted by n: in their paper) corresponding to 
the r d I species for which measurements were made. A similar 
problem was studied by Murthy (1973,1974). 
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Notice in the general linear reconciliation problem formulated 
above we have tacitly assumed all Variables to be measured. If this 
assumption is not true, we can always perform node aggregation 
(Mah et al., 1976) or appropriate output assignment and sorting 
(Romagnoli and Stephanopoulos, 1980) to obtain a reconciliation 
problem of lower dimension. We can therefore make this as- 
sumption without any loss of generality. 

For the above formulation the least-squares estimate of b, which 
is also the maximum likelihood estimate and also the minimum 
variance unbiased estimate, is (Seber, 1977, p. 85, Eqs. 3-59) 

6 = 60 + (DTQ-'D)-'AT[A(DTQ-'D)-'AT]-'(~ - A h )  (3) 

where 60 is the unconstrained least-squares estimate of b given 
bY 

60 = (DTQ-lD)-lDTQ-l Y. (4) 

6 = [I - QAT(AQAT)-'A]y 

For the special case considered by Mah et al. (1976) we get 

(5) 
which is their Eq. (5).  Similarly, with appropriate change of 
notation Eq. 4 becomes Eq. 14 of Madron et al. (1977). 

Let 3 = D6 where fi is given by Eq. (3). We shall refer to 9 as the 
vector of adjusted or smoothed measurements. 

DETECTION OF GROSS ERRORS 

Data reconciliation deals with the problem of random errors. 
If gross errors are also present in the process data, they must be 
identified and removed (by discarding the corresponding mea- 
surements) before reconciliation. In this paper we shall consider 
the gross errors to be associated with the measurements rather than 
the process model. The question to be answered is whether a gross 
error is present in at least one of the y,s, and if yes, which ones? 

A simple test to answer this question can be based on the resid- 
uals, 

(6) e = y -  ? = ( I  - DM)y- DNc 

M = (I - NA) (DTQ-'D)-'DTQ-' 

N = (D TQ-lD)-lA T[A(D TQ-lD)--IA 

where 

(7)  

(8 )  

e - N(0,V) (9) 

(10) 

and 

It is easy to show that 

where 

V = (I - DM)Q(I - DM) T .  

Therefore, under Hd: There is no gross error in the ith observa- 
tion, 
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ei - N(U,U'f ). (11) 
We would reject Hd and conclude that there is a gross error present 
in the ith observation, if 

(12) 

where Z,/z is the upper a /2  point [i.e., (1 - cu/2)th quantile] of the 
standard normal distribution and a is the level of significance. 

Very recently, Tamhane (1981) has shown that a better test may 
be based on the transformed residual vector 

d = Q-le - N(0,W) (13) 

W = Q-lV(Q-l)T. (14) 

lZl = l e j I / G  > z,/z 

where 

It can be shown that the test statistics 

zi = d i / d G  (15) 
possesses the maximal power for detecting the presence of a single 
outlier. [For a review of statistical literature on detection of outliers, 
see Barnett and Lewis (1978).] We would conclude that the ith 
observation is an outlier (contains a gross error) with a type I error 
probability of a, if 

lzil > z a / z .  (16) 
The above test may be modified to take into account of the effect 

of carrying out multiple tests (i = 1,2, . . . , n). The idea is that for 
multiple tests, all at level a, the probability of rejecting at least one 
H d  when in fact all Hd are true (i.e., the probability of overall type 
I error) can be much larger than a. It approaches one, as n tends 
to infinity. To account for this effect and to guarantee that the 
probability of overall type I error is controlled at a, the test Eq. (16) 
may be modified in the following way: Reject Hd and conclude 
that there is a gross error present in the ith observation, if 

lztl > Z P / 2  (17) 

(18) 
Since p < a for n > 1,Zg/z > Zp/z making it more difficult to reject 
Hot. 

In fact, even in the situation where a single gross error is sus- 
pected but the source of the gross error is unknown, it is appropriate 
to use the critical point Z g p  and not Z,/z. This is so because in this 
situation the test should be based on 12 lmax = gs, 12, I and a gross 
error in the observation corresponding to lZlmax is indicated, if 
12 I max exceeds the critical value. The null distribution of 12 I 
is not standard normal and hence Za/2 is not the appropriate critical 
value for guaranteeing type I error probability of a. The null dis- 
tribution of 12 lmax is in general complicated but it can be shown 
(Sidak, 1967) that 20/2 provides an upper bound on the exact a 
upper point of (Z  Jmax and thus a conservative test. 

where 

p = 1 - (1 - a ) l / n .  

POWER OF THE PROPOSED TEST 

When gross errors are present, E ( c )  = 4, where E(t0 = 61 # 0, 
if gross error is present in the ith observation. Now 

E(d) = E(Q-le) = Q-'E[(I - DM)y - DNc] 

= Q-'[(I - DM)(Db + 5 )  - DNc] (19) 

= Q-l(I - DM)6 = C 6. 
If only one gross error is present, say, in the nth observation, 
then 

W j )  = E(d,) /& = &,gj,,/& = ut, i = L 2 , .  . . , n (20) 
and the power of the test is bounded above by 
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Figure 1. Power of the test for Y. = 6., a = 0.05. 

= 1 - PI-k - U, I 2, - U, -< k - u,} 
= 1 - ( @ ( k  - u,) - @(-k - v , ) }  

= @(Y" - k )  + +(-u, - k )  
where 

and 

is the standard normal distribution function. Figure 1 shows that 
as the magnitude of the gross error increases, so does the probability 
of its detection. Strictly speaking, the power should be written as 
P{lZ, l  > lZjl (1 5 i I n - l ) ,  lZ,l > k } .  But as 6, increases, it 
becomes practically the same as Eq. (21). For the general situation 
involving possible presence of multiple gross errors, computer 
simulation may be used to obtain an indication of the power of the 
test. 

DISCUSSION 

We note that rank (V) = rank (W) = n - (p - 9), where 9 = rank 
(A) 5 p .  The estimates 9 lie in the (p - 9) dimensional subspace 
of R", whereas the residuals e lie in its (n - p + 9) dimensional 
orthogonal complement. There is a trade-off between the esti- 
mation space which contains the reconciled estimates of parameters 
(state variables) and the residual space which contains the infor- 
mation for gross error detection. If the constraints, Eq. (2), are to- 
tally absent, and rank (D) = n, e will lie in a nullspace, and the 
measurements will be perfectly fitted, In other words, all the in- 
formation derived from measurements will be used for estimation 
and none for gross error detection. In the other extreme, if rank (A) 
= n, then b and 9 may be estimated without using measurements, 
and rank (V) = rank (W) = n. In that case all the information de- 
rived from measurements will be available for gross error detection, 
and none will be used for estimation. 

In general, the rank of V or W will be less than n ,  and it is pos- 
sible to have the same Zj for different measurements, making it 
impossible to differentiate between them in gross error identifi- 
cation. This problem will arise if we allow more than two streams 
linking the same pair of nodes in the process digraph, which in- 
troduces an inherent nonidentifiability unless it is augmented with 
further information, for instance, stoichiometric information. If 
the number of distinct values of Zj, say m, is less than n, a less 
conservative multiple test may be obtained by using m in place of 
n in Eq. (18). 

In this note we have shown the reconciliation of process flow and 
reactor data as special cases of least-squares estimation with and 
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without linear constraints and the detection of gross errors in pro- 
cess data as a problem of testing for outliers in statistical data. The 
proposed gross error detection scheme makes use of a recently- 
developed test which possesses maximal power properties for de- 
tecting the presence of a single outlier (gross error). This test can 
be extended to deal with multiple outliers but without the guar- 
antee of maximal power properties. The procedure which is ap- 
plicable to any linear reconciliation problem is simple to apply and 
to program on computers. 

For process data obeying normal distribution but containing a 
single gross error the power of this test is given in closed analytical 
form. Its properties for a more realistic situation may be obtained 
by computer simulation. 

By dealing directly with the residuals (the differences between 
observed and fitted values) the necessity of interposing an identi- 
fication scheme following the detection of one or more gross errors 
is eliminated. Once a gross error is detected, its origin is automat- 
ically identified. 
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NOTATION 

A 
b 
6 
60 
C 

d 
D 
e 
E(. )  
G 
I 
k 

M 
n 

= a (9 X p) matrix of known constants 
= a (p x 1) vector of unknown parameters 
= least-squares estimate of b 
= the unconstrained least-squares estimate of 6 
= a (9 X 1) vector of known constants 
= a transformed residual vector defined by Eq. (13) 
= an (n X p) matrix of known constants 
= the residuals y - 4 
= expected value of 
= Q-l(I - m) 
= identity matrix 
= Zg/z, the (1 - @/2)th quantile of the standard normal 

distribution 
= a (p X n )  matrix defined by Eq. (7) 
= the number of measured variables 

= a (p X 9) matrix defined by Eq. (8) 
= the number of unknown parameters 
= probability of 
= the number of linear constraints 
= an (n X n )  variance-covariance matrix 
= variance-covariance matrix of the residuals, e 
= variance-covariance matrix of transformed residuals, 

= an (n x 1) vector of measured variables 
= an (n x 1) vector of adjusted measurements 
= a test statistic defined by Eq. (15) 
= a test statistic defined by Eq. (12) 
= level of significance 
= modified level of significance defined by Eq. (18) 
= a gross error 
= an (n x 1) vector of errors 
= the expected value of Z 
= standard normal distribution function, Eq. (23) 

d 
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Laminar Flow in the Entrance Region of a Parallel Plate Channel 
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Fluid flow in the entrance region of a channel, or a pipe is 
characterized by non-similar velocity profiles. Typically, a length 
of 150 diameters may exist in a laminar flow at Reynolds number 
equal to 2,000, before the fully developed Poiseuille profile is es- 
tablished. It is quite possible, therefore, that in a large majority of 
practical applications, such as in connecting pieces or in heat ex- 
changers, of much interest to chemical engineers, the transport 
phenomena are confined to the entrance region. 

The problem of laminar flow in the entrance region of pipes and 
ducts has been studied extensively by several investigators, e.g., 

0001-1541-82-5475$2.LUl. 0 The American Institute of Chemical Engineers. 1882. 

Schiller (1922), Schlichting (1979), Wang and Longwell (1964). 
These investigations were based, primarily, on the assumption that 
fully developed velocity profile is established at the location where 
the boundary layers meet at the duct axis. However, in a recent 
study of flow through a circular pipe (Mohanty and Asthana, 1979), 
it has been shown, both analytically and experimentally, that the 
boundary layers meet much earlier and the velocity profile 
undergoes adjustment in a purely viscous region to finally attain 
the fully developed form. The boundary layer region is called the 
“inlet region,” and the viscous zone the “filled region,” after Shingo 
(1966). 

The present study is aimed at extending the inlet and filled re- 
gion model to a parallel plate channel. 
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